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ABSTRACT
This work presents Motion Envelopes (ME), a simple method to estimate the missing longitu-
dinal rotations of minimal stick figures, which is based on the spatial-temporal surface traced by
line segments that connect contiguous pairs of joints. We validate ME by analyzing the gait pat-
terns of 6 healthy subjects, comprising a total of 18 gait cycles. A strong correlation between
experimental and estimated data was obtained for lower limbs and upper arms, indicating that
ME can predict their longitudinal orientation in normal gait, hence, ME can be used to comple-
ment the kinematic information of stick figures whenever it is incomplete.
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Introduction

Kinematic analysis plays an important role in the
quantitative evaluation of human movement in several
fields of research, such as non-pathological and
pathological analysis of human motion (Ludewig and
Cook 2000; Quental et al. 2018), gait (Sutherland
2002), sports (Bezodis et al. 2020; Genevois et al.
2020), rehabilitation (Safaeepour et al. 2014; Taylor
et al. 2020), or ergonomics (McDonald et al. 2019;
Harari et al. 2020) settings. To perform a proper kine-
matic analysis, it is necessary to track the motion to
obtain the spatial-temporal information of the
human movement.

High end commercial marker-based motion cap-
ture systems track the three dimensional (3D) nature
of human motion. In contrast, markerless systems
only provide an estimation of the position of the
human joint centres and some ending points (e.g., tip
of the head, hands and toes), which are then used to
build stick figures with a minimal set of points
(Shotton et al. 2013; Cao et al. 2017; Mehta et al.
2017, 2020), i.e., body segments are represented by a
line connecting two points, either joint centres or
other ending points, thus resulting in an abstract rep-
resentation of the human body usually referred to as
a ‘stick figure’ (Shotton et al. 2013; Cao et al. 2017;
Mehta et al. 2017, 2020).

In contrast, markerless optical systems only pro-
vide an estimation of the position of the human joint
centers and some distal points (e.g., tip of the head,
hands and toes), which are then used to build stick
figures with a minimal set of points (Shotton et al.
2013; Cao et al. 2017; Mehta et al. 2017, 2020), that
is, body segments are represented by a line connect-
ing two points, either joint centers or other ending
points, thus resulting in an abstract representation of
the human body usually referred to as a ‘stick figure’
(Shotton et al. 2013; Cao et al. 2017; Mehta et al.
2017, 2020). The advantages of markerless systems are
that they require simple acquisition protocols and the
kinematic information can be easily obtained in real-
time, making them the ideal solution for clinical and
rehabilitation applications (Kobsar et al. 2019; Lopes
et al. 2019; Alves et al. 2020; Chakraborty et al. 2020;
Worthen-Chaudhari et al. 2020). Despite these advan-
tages, markerless systems tend to present accuracy
problems due to errors during the determination of
the spatial location of the joints and to segments
occlusions, leading to badly estimated 3D orientations
of body segments (Cai et al. 2019; Çubukçu
et al. 2020).

Although commonly used in the analysis of human
movement, minimal stick figure representations do
not provide the needed kinematic information to
compute the six degrees-of-freedom (DoF) of each
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segment in space. Since each ‘stick’ is defined only by
two points and considering that at least three non-
collinear points are required to fully define the orien-
tation of the local reference frame of a body segment
in space, the kinematic analysis of stick figure models
inherently results in an ill-posed problem.
Nevertheless, several studies have investigated the
accuracy and reliability of kinematic analysis in nor-
mal (Geerse et al. 2015) and pathological (Ma et al.
2019) gait, or to evaluate the drop jump (Guess et al.
2017) using stick figures. In such studies, the accuracy
of spatial-temporal and kinematic variables vary from
modest to excellent between the data obtained using
the stick figure and a full-body model for spatial-tem-
poral parameters and for some kinematic variables,
particularly in sagittal and frontal planes (Geerse
et al. 2015; Guess et al. 2017; Cai et al. 2019; Ma
et al. 2019). However, poor correlations were found
for the longitudinal rotations of upper and lower
body segments (Cai et al. 2019; Matias et al. 2021).

In this work, the use of the Motion Envelopes
(ME) geometric method is explored to overcome the
lack of kinematic information that resides in minimal

stick figure representations. (e.g., stick figures with
limb segments represented by only 2 points). The
seminal concept underlying Motion Envelopes is that,
due to spatial and temporal coherence, the axial rota-
tion of any segment may be estimated by computing
the normal vector to the surface generated by a line
segment through space and time (Zhang et al. 2018;
Gammon and Menon 2020). Such geometric informa-
tion would allow for the definition of a local reference
frame for each segment (Schneider and Eberly 2003;
Lopes et al. 2013), thus solving the minimal represen-
tation of the human body model and presenting an
alternative to marker-based systems. Hence, the main
objective of this study is the validation of the ME
geometric method for analyzing normal human gait.
For that purpose, the estimated ME longitudinal rota-
tions will be compared with real rotation data from a
full-body model acquired from a marker-based system
that is considered our gold standard. To discard pos-
sible experimental errors, the orientations computed
using the two methods will consider the same data
pool. However, only the coordinates of the joints and
other relevant points of the biomechanical model will
be used in the ME model. Therefore, the differences
observed in the data will express deviations intrinsic
to the method and not due to experimental errors
associated with different acquisition systems.

Methods

Motion envelopes

ME is a geometric method that generates a surface
based on the line segment defined by two points that
compose a body segment, obtained by linear interpol-
ation of the trajectories traced through time. Thus,
this surface is defined by tracing the longitudinal line
(vL) that represents the segment throughout time (see
Figure 1). By computing the normal vector to this
surface (v?ME), it is then possible to determine a third
vector perpendicular by applying a cross-product
between the previous ones and, therefore, to estimate
the 3D orientation of the local reference frame of the
segment, thus, it is possible to estimate a 3D global
reference frame per segment that evolves in space and
time. This geometric tool comprises the computation
of a vector that is non-collinear (v�ME) to the vector
that define the segment in analysis (vL). Figure 2
presents the Motion Envelope (black surface) of the
right thigh and its respective normal vector
(green vector).

The first step of the method is to generate ME sur-
faces based on the motions of the corresponding body

Figure 1. Motion Envelope of the right thigh in two consecu-
tive strides: stick-figure of the first (black) and last (black)
frames with the joints of interest represented in orange and
blue (spheres). The motion of the thigh is represented by
(black) segments connecting the knee and hip markers in
each time frame and the corresponding normal vec-
tors (green).
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(line) segments in space. Each ME surface is obtained
by tracing a line segment between points P1 and P2
(i.e., proximal and distal segment joints) that define
the longitudinal direction of the body segment
throughout time, as schematically represented in
Figure 2. Accordingly, the longitudinal vector (vL)
can be calculated as:

vL ¼ r2 � r1 (1)

where r1 and r2 are the position vectors with the 3D
Cartesian coordinates of points P1 and P2.

The second step uses the definition of two auxiliary
planes of motion, ME1 and ME2, for each time frame
ti, as depicted in Figure 3. The first plane (ME1) is
defined using vector vL at time frame ti and the dis-
placement vector of point P1 from the previous time
frame ti�1 to the current time frame ti: The second
plane (ME2) is defined in a similar way, however, the
displacement vector of point P2, calculated from the
current time frame ti to the next time frame tiþ1, is
used instead.

Hence, for instant ti, the vectors normal to each
plane are computed, using the cross product:

v?ME1 ¼ vL � r1ti � r1ti�1ð Þ (2)

v?ME2 ¼ vL � r2tiþ1
� r2tið Þ (3)

For the same instant ti, the orientation of the vector
normal to the surface (v?ME), is then obtained by calcu-
lating the average between the two normal vectors:

v?ME ¼ 1
2

v?ME1 þ v?ME2

� �
(4)

Finally, the three orthogonal unit vectors that
define the local reference frame of each segment can
be computed:

vz ¼ vL
vLj j (5)

vy ¼ v?ME

v?MEj j (6)

vx ¼ vy � vz (7)

Finally, these vector calculations (Equations 1-7)
are applied to each body segment, which render sev-
eral MEs for a single stick figure.

Experimental data acquisition

The applicability of the ME method in the estima-
tion of the segments’ orientations was evaluated by
applying it to the gait patterns of six healthy volun-
teers (age: 25.4 ± 7.74, height: 1.70 ± 0.10, weight:
62.6 ± 11.1) for a total of 18 gait cycles. The experi-
mental procedures used in this study were previ-
ously approved by the IST Ethics Committee (Ref.
1/2020 CE-IST). All subjects gave their written
informed consent after a detailed explanation of the
experimental protocol and before the beginning of
the study.

Kinematic data was acquired in the Lisbon
Biomechanics Laboratory at Instituto Superior
T�ecnico using an optoelectronic motion capture sys-
tem composed by 14 Infrared ProReflex 1000 cameras
(Qualisys#, G€oteborg, Sweden), set to an acquisition
frequency of 100Hz. Prior to the data acquisition, all
subjects had an adaptation period to the experimental
setup. Afterwards, a 15-second static trial was per-
formed followed by three valid gait cycles for
each leg.

Figure 2. Representation of the Motion Envelope surface for the thigh segment (in grey), defined using the 3D Cartesian coordi-
nates of points P1, located at the knee (blue circles), and P2, located at the hip (orange circles), and connected by longitudinal
vector vL (dashed).
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Biomechanical models

A 3D full-body biomechanical model with 16 ana-
tomical segments (see Figure 4a) was implemented to
serve as ground-truth for comparing the results
obtained from the ME method to the stick-figure
model (see Figure 4b) created to represent the type of
kinematic data commonly obtained by markerless sin-
gle camera systems (Shotton et al. 2013). A marker

set protocol with 68 retro-reflective spherical markers,
including calibration and tracking markers, was uti-
lized to acquire the movements of the six subjects
(see Figure 4c). The elbow, wrist, knee, and ankle
joint centers were computed as the midpoint of the
retro reflective markers placed on lateral and medial
bony landmarks (see Figure 4c), while the hip joint
center was computed using the regression method

Figure 3. Triangulation steps for the thigh segment: a) calculation of the vectors normal to plane ME1 and ME2 considering the
time frames ti�1, ti and tiþ1; b) definition of the body segment orientation.

Figure 4. (a) full-body biomechanical model – black dots depict the points used to define the model and the red, green and
blue vectors represent the anterior-posterior, medial-lateral and longitudinal vectors of each segment, respectively; (b) stick figure
model – black points and lines depict the “stick figure” representing the human body, while blue vectors represent the segments
longitudinal vectors; (c) marker set protocol – red and yellow points represent reflective markers seen from an anterior or from a
posterior view, respectively, orange points represent markers seen in both views and blue points are tracking markers placed on
rigid plates.
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proposed by Davis et al. (Davis et al. 1991).
Furthermore, the trajectories of the elbow and knee
markers were reconstructed using clusters of markers
placed on the thigh and upper arm. The definition of
the local reference frames of each segment followed
the recommendations provided by the International
Society of Biomechanics (ISB) (Wu et al. 2002, 2005).

Figure 4 (a) full-body biomechanical model – black
dots depict the points used to define the model and the
red, green and blue vectors represent respectively the
anterior-posterior, medial-lateral and longitudinal vec-
tors of each segment; (b) stick figure model – black
points and lines depict the “stick figure” representing
the human body, while blue vectors represent the seg-
ments longitudinal vectors; (c) marker set protocol –
red and yellow points represent reflective markers seen
from an anterior or from a posterior view, respectively,
orange points represent markers seen in both views and
blue points are tracking markers placed on rigid plates.

Data processing

The coordinates of the markers were filtered using a
2nd order low-pass Butterworth filter with a cut-off
frequency of 6Hz. Segment orientations were poster-
iorly calculated using the ISB recommendations, for
the first model, and the proposed ME method for the
later. Hence, for the later model solely the joint coor-
dinates and distal points were used for the calculation
of the segments’ orientations, i.e., no auxiliary
markers were used in the calculation of the orienta-
tion of the model’s segments.

Segments’ orientations, computed using both meth-
odologies, were compared by calculating the angle
between the medial-lateral vectors (vy) of both models
(see Figures 4a and 3b, respectively) and the medial-
lateral direction of the global reference frame. With
the results obtained for these angles, the mean abso-
lute error (MAE) between the two data sets was

Figure 5. Representation of the angle between the medial-lateral vector and the global reference frame for the full-body (blue)
and stick figure model (black) along the gait cycle for a right stride (shaded region indicates ±1 standard deviation of the experi-
mental data).

Table 1. MAE and maximum absolute error between the medial-lateral vectors computed using the two methods along the
gait cycle.

Angular Position (�)

Thigh Leg Foot Upper Arm Fore Arm Hand

R L R L R L R L R L R L

Max (raw) 12.1 15.3 26.0 21.8 17.4 13.2 17.7 20.8 56.9 58.7 66.6 65.7
Max (corrected) 4.8 5.5 11.5 10.3 8.9 7.0 4.8 4.9 23.2 25.2 25.4 25.2
Mean (raw) 7.3 9.9 14.5 11.5 8.6 6.2 13.0 16.0 36.0 34.0 46.0 41.0
Mean (corrected) 2.2 2.3 4.5 3.2 2.8 1.9 3.3 1.8 13.3 15.9 14.6 15.5

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 5



Figure 6. Representation of the segments orientation with the offset correction: Left) angle between the medial-lateral vector
and the global reference frame for the full-body (blue) and stick figure model (black); Right) absolute error between orientations
along the gait cycle.

Figure 7. Representation of the first time derivative of the angle between the medial-lateral vector and the global reference
frame for the full-body (blue) and stick figure model (black) along the gait cycle for a right stride.
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calculated throughout the gait cycle. Additionally, the
Pearson correlation coefficient (PCC) between the
two medial-lateral angles throughout the gait cycle
was also computed. All calculations were performed
using custom scripts written in MATLAB
(MathWorks#, Natick, MA) and Python 3.7 (van
Rossum and Drake 2006).

Results

The proposed ME method enabled the estimation of the
segments orientation of a stick figure model during gait
movements. However, the reliability of the results varied
across segments. In general, the orientations for the
lower limbs followed the patterns observed in the full-
body model used as ground-truth. The same can no lon-
ger be stated for the results obtained for the upper limbs,
in particular for the forearm and hand, in which a non-
consistent patterns were obtained with respect to the
full-body model.

Lower limbs

The orientation of the medial-lateral vector for the
lower limbs shows a smooth trajectory throughout the
gait cycle (see Figure 5). This pattern was already
expected, as the walking movement is not character-
ized by abrupt longitudinal rotations. A comparison

of the segments’ orientation computed using the two
methods indicates the existence of similar patterns for
all analyzed segments, which is supported by the
strong to very strong positive correlation observed in
the thigh (right: r¼.882, p<.001; left: r¼.904,
p<.001), shank (right: r¼.813, p<.001; left: r¼.917,
p<.001) and foot (right: r¼.939, p<.001; left: r¼.935,
p<.001) segments. Regarding the MAE, the foot seg-
ment presented the lowest value (8.6�), followed by
the thigh (9.9�) and finally by the leg (14.5�) (see
Table 1).

Despite the existence of a strong correlation
between the two methods, the results show a vertical
shift between curves, which varied with the segment
in analysis. These differences can be explained by the
inability of the ME method in estimating the initial
orientation of the segment. Hence, to better compare
the curves, their mean value was calculated and
removed (see Figure 6). This procedure allowed for
the decrease of the MAE to values around 2.2� for the
thigh, 4.5� for the shank and 2.8� for the foot.
Likewise, the maximum error along the cycle
decreased to values near 5.5�, 11.5� and 8.9� respect-
ively to the thigh, shank, and foot segments (see
Table 1).

The applicability of the ME method in gait is also
supported by the analysis of the first time derivative
of both curves (see Figure 7), which indicates the

Figure 8. Representation of the angle between the medial-lateral vector and the global reference frame for the full-body (blue)
and stick figure model (black) along the gait cycle for a right stride (shaded region indicates ±1 standard deviation of the experi-
mental data).

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 7



Figure 9. Representation of the segments orientation considering the offset correction: Left) angle between the medial-lateral
vector and the global reference frame for the full-body (blue) and stick figure model (black); Right) absolute error between orien-
tations along the gait cycle.

Figure 10. Representation of the first time derivative of the vector between the medial-lateral vector and the global reference
frame for the full-body model (blue) and stick figure model (black) along the gait cycle for a right stride.
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existence of a strong correlation between the two
methods for all lower limb segments, thigh (right:
r¼.832, p<.001; left: r¼.0.759, p<.001), shank (right:
r¼.812, p<.001; left: r¼.818, p<.001) and foot (right:
r¼.899, p<.001; left: r¼.809, p<.001) segments.

An analysis of the variability of the curves shows
that the full body method tends to present a more
uniform variability along the cycle, while the standard
deviation in the ME method varied across the gait
cycle. A higher variability is also found in the ME
method, in particular for the leg and foot segments
(see Figure 5).

Upper limbs

The upper arm orientation was characterized by a
progressive external rotation movement from the ter-
minal swing phase until the terminal stance phase,
followed by an internal rotation movement in the
subsequent phases (see Figure 8). The ME method
was able to predict this behavior, resulting in a pat-
tern similar to the one obtained using the full-body
model (see Figure 8). These findings are supported by
the very strong correlation observed between the two
methods (right: r¼.983, p<.001; left: r¼.984, p<.001).
A MAE of 16� was achieved for the upper arm that
decreased to 3.3�, when the mean of the signals was
removed (see Figure 9). The value for the maximum
absolute error, considering the offset correction, was
approximately 5� (see Table 1). The comparison of
the first time derivative calculated for both methods
also indicates the existence of a strong correlation for
the upper arm (right: r¼.965, p<.001; left: r¼.952,
p<.001), suggesting that the variation of the orienta-
tion along time estimated using the ME method is
consistent with the full-body model (see Figure 10).

The ME was not able to depict the forearm longi-
tudinal rotations along the cycle. The pattern obtained
using the full-body model shows small variations in
the orientation of the forearm, indicating that the
forearm is rotating to counteract the upper arm longi-
tudinal rotation described above. In contrast, the ME
predicted a variation in the forearm orientation simi-
lar to the one observed in the upper arm, implying
that no significant rotations occurred at the forearm
segment to compensate the upper arm internal and
external rotation (see Figure 8). These differences
resulted in lower correlation values for this segment
(right: r¼.230, p<.05; left: r¼.718, p<.001), as well as
a MAE of 15.9� even when the mean signal was
removed (see Figure 9 and Table 1). A similar trend
was observed for the hand segment. Since no

longitudinal movement occurred at the wrist joint,
the orientation obtained for the hand using the ME
method followed the orientation predicted to the fore-
arm segment (see Figure 8 and Table 1). In this seg-
ment the following correlation was obtained, (right:
r¼.183, p>.005; left: r¼.594, p<.001).

As for the lower limbs, the analysis of inter-vari-
ability for the upper limbs segments shows higher
standard deviation values in the ME method and
more variations along the gait cycle.

Discussion

The present work explores the utility of the ME
method in estimating the global orientation of limb
segments of minimal stick figures during gait cycle.
ME unfolds the geometric relations from the spatial-
temporal surface described by body segment move-
ments, enabling the computation of a vector normal
to the plane of movement defined by tracing the seg-
ment in space throughout time. The variations in the
vector orientation represents the temporal evolution
of the local reference frame of the segment during
movement. By extracting these geometric relations
from the movement patterns, it is possible to comple-
ment the kinematic data of minimal stick figures with
the missing longitudinal rotations.

The ME method allowed for the successful estima-
tion of the global orientations of the thigh and leg
segments along the gait cycle, presenting a strong to
very strong correlation with the full-body biomechan-
ical model. Regarding the upper limb, results show
only a strong correlation for the upper arm. ME did
not predict the longitudinal rotation that occurred at
the forearm segment to counteract the upper arm
rotation. Despite the strong correlation observed in
the lower limbs, the results show a noticeable offset
in the segments orientation between the two methods.
This difference can be explained by the incapacity of
the ME method in estimating the initial angular pos-
ition of the segment longitudinal rotation. This issue
limits the application of ME to estimate the magni-
tude of the longitudinal rotations associated with the
movement. However, it can be used to predict the
variation of the longitudinal rotation along the cycle
and to estimate its angular amplitude. This idea is
supported by the strong correlation between the two
methods. Furthermore, when the offset was removed,
either by removing the average of the signal or by
comparing its first derivative both patterns followed
the same trend, in particular the upper arm and lower
limbs.

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 9



Moreover, ME is computationally efficient since it
relies on simple geometric relations between vectors,
which make ME suitable for real-time applications.
Additionally, ME can be applied to data coming from
different sources, as it only requires the coordinates
of the points that define the stick figure model. The
versatility and computational efficiency of the ME
method enables its use in tandem with acquisition
systems based on inexpensive and portable cameras,
complementing the kinematic information provided
by them. This feature is of utmost interest for clinical
and rehabilitation applications, since besides the limi-
tations previously noted for the high-end motion cap-
ture systems, they require additional equipment that
can interfere with the movement under analysis.

Despite its advantages, ME presents some limita-
tions that do not allow its use to substitute the usual
methods for computing the 3D orientation of the
body segments in biomechanical models defined with
three non collinear points. ME cannot predict the ini-
tial angular position of the segment and, conse-
quently, cannot determine the value of the angular
displacement associated to the movement. Moreover,
ME presents a poor accuracy when applied in the
study of movements with pure axial rotations (as seen
in the lower correlations observed in the forearm seg-
ments), as from a geometric point-of-view, a pure
longitudinal rotation does not imply a variation in
the orientation of the ME surface. Hence, the normal
vector that is computed posteriorly will not depict the
movement that is occurring.

The ME can also present problems for static or
very slow movements, as the displacement vectors
used to define the ME surface will be null or have
small magnitudes. In these cases, adaptations to the
method need to be considered to avoid algebraic sin-
gularities or instable orientations, since small errors
in the determination of the joints position can result
in noisy orientations or even in the inversion of the
local reference frame. A possible strategy to avoid this
problem would be to use the normal vector computed
in the previous time frame to define the segment
orientation.

ME method can also be sensitive to the acquisition
frequency of the system in use. For high frequencies,
the displacement vector between time frames can pre-
sent a small magnitude and, as in the previous case, if
the data has noise, instabilities can occur during the
calculation of segment orientation.

Regarding sample size, although experimental data
was collected from six subjects, we consider that the
number of gait cycles analyzed was sufficient to

evaluate the ability of ME to estimate the longitudinal
rotations of arms, forearms, thighs, and legs during
normal gait with only 2 points per segment.

Despite these limitations, for movements character-
ized by smooth translations and rotations, the ME
method performs well, providing a strong correlation
with the orientations computed using the more com-
plex biomechanical model. Moreover, the proposed
method is not restrained to movements in sagittal
plane: the main requirements to apply ME are for the
movement to be non-stationary (e.g., not standing in
the same position or adopting the same pose), to be
smooth and continuous throughout time, and easily
trackable with a minimal set of markers. Hence, ME
can be applied to any movement in any anatomic
plane, as long as it is not composed by static motions
or pure axial rotations.

In conclusion, this work presents an efficient
method to estimate the orientation of body segments
in stick figure models. Based on the surface generated
by tracing the evolution of the segment in space, the
ME method defines an orthogonal vector that depicts
its rotation over time. This feature allows for the esti-
mation of a plausible orientation for the segment,
complementing the kinematic data with intrinsic
information existent in the movement patterns. Due
to the versatility and computational efficiency of the
method, it can be easily applied in real-time applica-
tions to support the kinematic data retrieved from the
common optical markerless systems, extending its use
in clinical and rehabilitation environments. When
applied to gait, this method produced good results for
most body segments. Hence, the proposed method
seems to be a valid tool to estimate orientations of
stick figure models in smooth movements when the
kinematic information is scarce. As future work, we
aim to test our approach with a larger segment of the
population and a greater variety of movement types
to further validate our ME method. For instance, we
expect that our approach can easily scale beyond
movements predominantly occurring in the sagittal
plane (e.g., gait) and towards other movements in
frontal or transverse planes. We also intend to explore
the validity of the ME method in the study of patho-
logical populations to assess if the method is sensible
to identify kinematic differences and compensa-
tory movements.

Disclosure statement

No potential conflict of interest was reported by
the authors.

10 I. F. ROUPA ET AL.



Ethics approval

Ethical approval for this study was obtained from ethics
committee of Instituto Superior T�ecnico in January 2020
with reference number 1/2020 (CE-IST).

Funding

This research was supported by the Fundaç~ao para a
Ciência e a Tecnologia through grants with references
UIDB/50022/2020, UIDB/50021/2020, UTAP-EXPL/CA/
0065/2017, and PTDC/CCI-COM/30274/2017.

ORCID

Miguel Tavares da Silva http://orcid.org/0000-0001-
7056-4555
Daniel Sim~oes Lopes http://orcid.org/0000-0003-
0917-9396

References

Alves T, Carvalho H, Lopes DS. 2020. Winning compensa-
tions: Adaptable gaming approach for upper limb
rehabilitation sessions based on compensatory move-
ments. J Biomed Inform. 108:103501.

Bezodis IN, Cowburn J, Brazil A, Richardson R, Wilson C,
Exell TA, Irwin G. 2020. A biomechanical comparison of
initial sprint acceleration performance and technique in
an elite athlete with cerebral palsy and able-bodied
sprinters. Sports Biomech. 19(2):189–200.

Cai L, Ma Y, Xiong S, Zhang Y. 2019. Validity and reliabil-
ity of upper limb functional assessment using the
Microsoft Kinect V2 sensor. Appl Bionics Biomech.
2019:1–14.

Cao Z, Simon T, Wei SE, Sheikh Y. 2017. Realtime multi-
person 2D pose estimation using part affinity fields. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. p. 1302–1310.

Chakraborty S, Nandy A, Yamaguchi T, Bonnet V, Venture
G. 2020. Accuracy of image data stream of a markerless
motion capture system in determining the local dynamic
stability and joint kinematics of human gait. J Biomech.
104:109718.
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Matias NV, Roupa I, Gonçalves S, da Silva MT, Lopes DS.
2021. Estimating anatomically plausible segment orienta-
tions using a kinect one sensor. Ann Med. 53(sup1):
S143–S144.

McDonald AC, Mulla DM, Keir PJ. 2019. Muscular and
kinematic adaptations to fatiguing repetitive upper
extremity work. Appl Ergon. 75(February 2018):250–256.

Mehta D, Sotnychenko O, Mueller F, Xu W, Elgharib M,
Fua P, Seidel HP, Rhodin H, Pons-Moll G, Theobalt C.
2020. XNect: real-time multi-person 3D motion capture
with a single RGB camera. ACM Trans Graph. 39(4):
1–24.

Mehta D, Sridhar S, Sotnychenko O, Rhodin H, Shafiei M,
Seidel HP, Xu W, Casas D, Theobalt C. 2017. VNect:
real-time 3D human pose estimation with a single RGB
camera. ACM Trans Graph. 36(4):1–13.

Quental C, Azevedo M, Ambr�osio J, Gonçalves SB, Folgado
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